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1.  Introduction 

A stationary stochastic process that serves as a useful model for 

time series analysis is the autoregressive process with moving average 

residuals  {y} which satisfies 

(1-1) I    3S yt_s = I    <*    vt_i > 
s=0 

s t S  j=0 J t J 

t = ... , -1, 0, 1, ... , where the sequence  {v, } consists of indepen- 

dently identically distributed random variables.  [See Section 5.8 of T. 

W. Anderson (l971&)and Box and Jenkins (l970).J To avoid indeterminacy 

3Q = a = 1 .  (An. alternative of specifying the variance of v  to be 1 

and leaving a  as a free parameter is considered also.) The mean of 

v  is independent of t and is taken to be 0 for convenience.  (Mod- 

ifications necessary to account for an arbitrary mean are also discussed.) 

When  £y, = 0 , the stationarity implies 

(1-2) £yt ys = a(t-s) , 

dependent only on the difference of the indices. 

We shall assume that the vt*s are normally distributed, that is, 

that the process is Gaussian.  Then the model is completely specified by 

the coefficients in (l.l) and the variance of v, , say a2 . 

The statistical problem treated here is to estimate ß , ... , ß  , 

2 
0L ,•..., a  , and a  on the basis of a set of observations at T 

q. 

successive time points, y , ... , y  . 



If y = (y , ... , y )' , the density of the multivariate normal 

distribution H(0',Z)  of y is 

(1 •>)  1 e~^':fy 

(2TT)^ I 2 

where 

(l.M ^yt ys = ats ' t, s = 1, ... , T , 

is the t,s-th element of Z.  If the distribution is that defined by (l.l), 

then (l.U) is (1.2); the covariances are functions of the parameters 

2 
ß.. ..... ß  , an , . . . , a  , and a . 
I5    ' p '  1'       q. 

The method of maximum likelihood can be considered, but in general an 

explicit solution cannot be found.  The approach of this paper is to modify 

the model slightly so that the derivatives of the likelihood function set 

equal to 0 yield relatively simple equations.  Since these equations are 

nonlinear, an iterative procedure is proposed that yields asymptotically 

efficient estimates at the first step (as T -»• °° ). 

The estimation problems for the pure autoregressive process and pure 

moving average process as well as the general mixed model are set up in 

terms of more general multivariate models.  The case of N observations 

on the vector y is included.  This work is a continuation of earlier re- 

search on covariance matrices with linear structure by T. W. Anderson (1969), 

(1970), (1971b), and (1973).  The iterative procedures are extensions of that 

presented in the last paper, which is essentially the method of scoring (as 

pointed out to me by J. N. K. Rao). 



Durbin (1959), (i960) and A. M. Walker (1961), (1962) have proposed 

estimates, "but they are not asymptotically efficient (as T •> °°) .  Box 

and Jenkins (1970) have suggested maximizing the likelihood function by 

numerical means. 

The covariance sequence (l.2) of a stationary process has a spectral 

representation. In the case of an absolutely continuous spectral distri- 

bution fxsiction 

(1.5) cr(h) =    f(A) cos A h dA  ,     h = 0,+ 1 , ... , 

The spectral density f(A) may be determined by 

00 

(1.6) f(A) = ~r I    a(h) cos Ah 

when the series on the right-hand side converges.  In the case of model (l.l) 

the spectral density is' 

(1.7) f(A) = §^- -^ 

q. iAj 
J 

2 

1  3  eiAr 
r=0 

Clevenson (1970) and Parzen (1971) and Hannan (1969) have proposed estimation 

methods based on the sample spectral density (the so-called periodogram).  The 

relationship between these methods and the ones presented in this paper will 

be explicated in a later paper. 

If we let (l.l) be u. , the spectral density of the stationary process 

{u,} is t 



n-2  9-       i>i  ^        Tin 
(1.8) fuU) - |f I a elAJ J a e"1^ 

71 J=0  J     j=0  J 

= 2^ I au(h) e   • h=-q 

where 

2 q~|hl (1.9) a (h) = a   I     a -a. ...i , h = 0, +1, ... , +q , 
u      k=o  k k ihi 

are the nonzero covariances of {u} .  The parameters a, » ...» a  , and 

O 
a^ can he replaced hy a (0), a  (l), ... , a (a) .  We shall assume the 

roots of 

(1.10) M(z) = [ a. zq_t5 

are less than 1 in absolute value.  Then given a   (0), o  (l), ... , a (a) 4  0 
u  ' u u M- 

)5   a (h) z  can be factored uniquely into M(Z)M(Z
-
 ), thus, defining 

p 
a  ,   ... , a , and c .[See T. W. Anderson (1971a) and (l971h) for details.] 

Estimation of the pure moving average model in terms of a(0), a(l), ... , a(q) 

was treated hy T. W. Anderson (l971h), (1973). 



2. Estimation of Coefficients of Linear Transformations to Approximate 
Autoregressive Processes 

2.1 A General Linear Transformation.  Suppose y is a T-component 

random vector defined by 

P 
(2.1) l     ß0 K y = v , 

£=0 * ~* ~  ~ 

where Kn, K , ... , K  are p + 1 known linearly independent T x T 

matrices,  ßQ = 1 and ß^' ... , ß   are p parameters such that 

VX) 
H=0 ^£ ~£ is nonsingular5 we assume that there is at least one such . 

set.  Suppose v is a T-component random variable with mean vector 

p v = 0 and covariance matrix 

(2.2) £(y) = |VY' . a2 I . 

Then 

P      \-l 
(2.3) y =| l     ßp K £ ~£ v 

£=0 

has mean vector £y =  0 and covariance matrix 

<*•*>   £<?> - fc' - "2(j0 % S* f (J0 ^ X j"1 - «^ (k>L ^ »* K 5») " 
with inverse 

(2.5)   ^(y) = ^ ? ßk £ f ßÄ K£ = V J n ßk ßÄ £ 5A • 
a k=0     £=0      a k5£=0 

Let y , ... , y  be N observations on y , and let L denote the 

likelihood function, when y has a normal distribution.  Then 



(2.6) I   log L =  -T log 2TT - T log a    + 2 log   |   j     ß£ K£j 

"7^     ^     \X  ^*a| II    ß£*£y~a Na      a=l    \k=0 / \£=0 

2 p 

= -T log 2u - T log a    + 2 log   | I     g£ K£ 

£=0 

i2trv L MlX^S a k, £=0 

where 

(2'T) ^|Ka?i> a=l 

and tr denotesthe trace of the matrix that follows.  To find the partial 

derivatives of (2.6) with respect to  ß, , . . . , ß  we use the results 

9log|A|   1  3|A| 

39    ]Ä]~  80 

1    p  3|A|  3a,. 

(2.8) 

"ITT . \ .   3a. ,   36 

p   .. 3a.. 
=  f  „J1  ij 

. 4 ,     36 
i,j=l 

= tr A"1 |T- A . ~   dt) ~ 

(The cofactor of a..  in A is denoted by cof a...) Then 
ij ij 

3_   2_ 
3£    N U=0 

(2.9) W   FlogL =  2tr       J     ßkKk   )       K, 

N E 
I    laX^^hla 

Wa2   a=l """ K=0 



£  = 1,   ...    ,  p   . 

(2.10) 3    |logL = _^.+ l-tr J       3k0    SK    C   . 
3a a       a k,£=0 

If    N = 1    and    y    = y  ,  the  derivatives   (2.9)  are 

and  (2.10)  is 

(2'12) " VV   f „^y'  &**?   • 
0 a    k,£=0 

The maximum likelihood estimates may be  defined by  setting the derivatives 

equal to  0.     [By the  argument used in T.   W.  Anderson   (1970)  it  follows that 

there is at  least  one  relative maximum defined by the  derivative equations.] 

The derivative equations are 

(2'13)        ^ ( Jo ^ &] _1  h  = 72    j0   ^ *' E  ?£   C   , 

k9£=0 

We can develop these equations in an alternative way by letting 

(2.15) \ yn =  yjk) ,        k = 0, 1, ... , p, a = 1 , ... , H . 

Then 

(2.16) - log L = - T log 2ir - T log 0    +2 log   |   J     $    K. 
£=0    Ä ~* 

Na     CF=1   \k=0   *   a z,   p? y 
£=0    z ~a 

= - T log 2TT - T log a2 +  2 log|   l     ß„  KJ   - ~ ßf   M     ß   , 
£=0    Ä -*•        Q    -    -    ~ 



where 

(2.17) 

/ 

(2.18) M = |- I 
a=l 

y(o)' 
ia y(0) (0)' 

y(1) 
ia 

(1)' y ~a y(0) 

~a y(1)' ~a y(1) 
~a 

(p)' y ~a y(0) 
~a 

y(p)' 
la y(1) 

~a 

y 

y 

(o)'  (p) 
a    ~a 

(i)' Jv) 
a »a 

(p)'   (P) y    y ~a    ~a 

The partial derivatives of (2/N) log L set equal to 0 can be written in terms 

of the elements of M as 

(2.19) 

(2.20) 

-1 
tr 11B* ^ K 

I 7§ M. 

a = ^ tr 3 M ß ; 

the left-hand side of   (2.19)  denotes  a row vector with the  £-th  component 

given explicitly. 

If    I  > 1    and     $>j = u  ,  where    \x    is  an  arbitrary vector,  then the 

sample mean 

N 
(2.21) 1 

N     '-,   ".a 
x = w    I    ? 

y=i 

is the maximum likelihood estimate of u , and in the likelihood equations 

(2.13) and (2.lU),  C should be replaced by 

(2,22) -       1    ? 
~ = Ui (^)(^)! 

In some models  one wants      py.  = u  j  that  is,      £y = ]i£   , where 



9 

e = (l, 1, ... s l)'.  Then 2/N times the logarithm of the likelihood 

function is (2.6) with C replaced by 

a=l 

The derivative of 2/N times the logarithm of the likelihood with 

respect to y is 

3y 
(2.2U)  ^ § log L = -^ E.  £  a ff£ K- K£ I (ya-ys) 

Na   k,J6=0 a=l 

If e is a characteristic vector of K_, KL. , ... , K  , then ~0 ~1       ~p 

(2-25) Jsii^v 
a=l 

and in the other derivative equations C is replaced by 

N 

I 
a=l 

(2*26) F I    (Xa-M > (?a -M 
}' • 

If e is not a characteristic vector of K , K , ... , K  , then usually 

(2.25) will not be the maximum likelihood estimate of u . 

The second derivatives of  (2/N) log L defined by (2.6) are 

^2 / p      \ -1   / p       V -1 

<*•*>  ä^l1-L = -2-(j0^5k)"1^(j03k?k) *£ 

- ~- tr K! K C ,     J, 1=1,   ... , p , 
a ~J ~ ~ 

2 p 
(2.28)   ^—- I log L = ^r-tr I  3 K! K C ,     j = 1 p , 

The elements of the information matrix are N times 
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(2.30) ~g~-z7r-   ^log L F 33. 3ß0  N 

-1 

(2.31) -? 33. 3a 
2  N 

;^ '•= THJ^^ 
-1 

5j ' J = i, p , 

(2.32)   -j? 
(3a ) 
— |- log L 

2a 
F ' 

As N •*• °° 5 the normalized maximum likelihood estimates have a limiting 

normal distribution with covariance matrix whose inverse has elements given 

by (2.30), (2.31), and (2.32). 

2.2 Autoregressive Process Approximated by a Linear Transformation 

The autoregressive process  {y, } is (l.l) for a-, = . 

that is. 

= \ =  ° > 

(2.33) I   K y+._„ = v 

s=0 s •'t-s   t 

Let  y = (y ,...,y ) .  Then the distribution of Li       . . .   ,   ~"_L ,   ^5   *^" 5   ... 

y,, ... , y is approximated by the distribution of y defined by (2.1) when 

K = Lg , g=0, 1, ... , p , where 

/0 0 0 

/ 1 0 0 

0 1 0 

(2.3M L = | 
- 

• • 

I o 0 0 

\o 0 0 

0 

1 
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Then 

(2.35)  IT = 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

1 0 0 0 0 0 0 

0 1 0 0 0 0 0 

0  0 

0 0 

1 0 I 
In general Lö has all O's except for l's 

diagonal.  We suppose  p + 1 < T.  Note that 

g units below the main 

(2.36) ß  L
h = Lg+h h=0, 1, . 

(2.37) 0 , = T, T+l. 

In this case 

0 0 

1 
1 0 

2 h 1 

0 0 

0 0 

0     0 

(2.38; 
k=0 M, 

p-1   Mp-2 

P-1 

1 

3, 

o 

l 

which is triangular with O's above the main diagonal and has determinant 1. 
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The components of (2.1) are 

(2.1+0) 
t-1 

£n %  yt-s = Vt ' 
3=0 

t=l, 

(2.)a) l   ßsyt„s = V  
t=p+1 = 

s-0 

The equation \.2.1+l) agrees with the autoregressive process (2.33), hut the 

equation (2.1+0) is such that the sequence y , ... , y„ does not start out 

as a stationary process. An alternative way of considering the equation 

(2.1+0) is that (2.1+1) holds with yQ = y r-(p-i; 
= 0 

In this model we are often interested in N = 1 and y = y.  Then 

(2.1+2) 
(k)  „     Tk y   = \ y =  L y 

T-k. 

k=0, 1, ... , T-1 , 

where there are    k    0's,  and 

(2.1+3) Ek y = 0   ,  k=T,  T+l. 

Since     [Z-n  $1, .^\    is triangular with    0's     above the main diagonal, then 

(I 3,   L*) is triangular with    0's    above the main diagonal,  and the 

determinant  of    l*_Q  ^  Lk    is 1.     [The  diagonal terms of  (][P_0  3k Lk)_1  L£ 

are    0,   £=1,   ...   , p   .]     Then the derivative of    2/N    times the  logarithm 

of the determinant with respect to     3«     is 

(2.1+1+) 
93, 

log 
k=0 \l = tr 

,k=0 
ßk t I        f = °       * = 1.   •• 
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The derivative equations (2.13) can be written in this case as 

(2M) I   £>>V£) = -y (0)'yU) .       £=i, ...  .p. 

In components these are 

p    „      T T 
(2.fc6) I     ^     I    yt_k y = -    I    y    y^   , 1=1,   ...   , p   , 

k=l        t=l t=l 

where y = y  =...=y,*=0.  These are the usual 'maximum likelihood 

estimates of ß_ ..... (3  for initial values y~ = y , = ...= y  f     ., \ = 0 
1       P 0   -1        -(p-1) 

or the "least squares estimates" since they minimize 

{2M) U i \ ^t-k 
[See T.   ¥.  Anderson   (1971)»   Sections 2.2 and 5.h,  for example.] 

Let 

T-h 
(2.U8) ch = T    I  y± yi+h >        h=0> i» ••• » T-1 

i=l 

The right-hand side of  (2.U6)  is    -Tc     .     The  sum 
A/ 

(2'^9) ^  yt-k *t-L 

differs  from    Tci     .i     by omission of 

T-Ik-Ä| 
(2'50) £   •    ' y

+  
y

++lk-Jll   • t=T-max(k,£)+l    *    t+|k-*| 

These terms can be added to the coefficients so as to make the equations 

agree with 

p 
(2.51) I    3 c   = - c    f=l, ... , p . 

g=l S g 



11+ 

[See T. ¥. Anderson (l971a),Sec. 5-6, for example.] Then the estimates 

derived from (2.51) are the coefficients of a stationary process. [See 

Anderson (l9Tlc),  for example.]  If ve let 

0 

(2.52) ;0O 

y-i 

Jn 

o 

5        J^."-«w* 3   _L y • • •    5   _^J   5 

where the first k components are 0 and the last p-k components are 

0 , then (2.51) can be written 

(2.53) 
k=l 
^WjlH.-^'jl« , l=1, 

In this  case  of    K,   = L      the  elements of the  information matrix 

are    N    times 

(2.5M     -£ 9 1     1 T rr log   L   =   tr 
3ß.   3ß£    N B,.  L'kr  L'J   ifl.f     0,.Lk 

k=0 

-1 

k    !   • 

2 

(2-55)  -£—^5-   F^op:   L =  0   , 
3ß.  3a 

j 

2    N 

^k=0 

J a   Jo—1,   ...    ,  p, 

j   =  1,   ...    ,  p   , 

and  (2.32). 
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It is of interest to compare the covariance matrix of y defined by 

(2.1) with that of T terms from the stationary process defined by (2.33) 

For p=l and ß =ß the covariance matrix of the stationary process is 

(2.56) 

and 

a 

1-0' 

1 

-3 

3' 

-3 

l 

-3 

V (-3) 
T-l 

-3 

i 

(-3)T~2  (-3)T~3 

(-3) 

(-3) 

(-3) 

D-l\ 

T-2 

T-3 

(2.57) ^(y) = 

1-3 

-3(i-32) 

32d-32) 

\(-3)T-1(i- 

-3d-3 ) 32(i-32) 

i-B*     -Sd-3U) 

-3(i-3U)      1-36 

/)  (-3)^(1-^ (_3)^3(l_ß6: 

(-3)T_1(i-32) 

(-3)T~2(i-3U) 

(-3)T~3(i-36) 

l-i 
2T 

For a stationary process  |ß| < 1 , and hence the i5j-th element of ^(y)  is 

close to the i,j-th element of (2.56) if i and J  are large. 
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3. Estimation of Goefficients of Linear Transformation to Approximate 

Moving Average Processes 

3.1 A General Linear Transformation.  Another model is defined by 

(3.1) y = I    a J v , 

where j_, J , ... , J  are q. + 1 known linearly independent T x T 

matrices, a -  1 , and a  ,   ...   ,  a      are q    parameters such that £^_ a. Jp 

is nonsingular; we assume that there is at least one such set.  Suppose v 

is a random vector with mean vector £v -  0 and covariance matrix fe w' - a I 

Then the mean vector of y is  £y = 0 and the covariance matrix is 

(3.2) £(y) = £yy' = / \      % a   J    J- = a2 ( \    a. J. | [ | 
k,£=0 ^ l  •*  ~l \k=0  k ~kj\£=< 

If L denotes the likelihood function, then 

!3.3) j log L = -T log 2TT - T log a2 - 2 log   |   \    a   J. 

 f) A/      ~J6 

k=0    ~ ~k 

--% i Al \jk]_1(i «£
j

Al la    oe=l ~a\k=0    K ~K|     \£=o    l ~ÄI 

? 1 
= -T  log  2lT - T log o    - 2 log   |   I    a.   J. | 

k=0 ~ 

- ~tr|     I    o^ J^|      (    J    a„  Jn|       C 

-1 
y a 

2        1    L    %*k Xk I      S    ^    "5  " J a        \ k=o   * ~K|     \£=o   Ä ~* 

We use the result that 

8.-1-      ,-1/3.1 .-1 

which  follows from differentiating    A A-    =  I   .     The partial derivatives  of 

(2/N)  log L    are 
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q       \-l 

O2        \ 1=0     l  ~£j   ~ I £=0 l  ~£ I   ~J I £=0  £ ~£ 

j=l, . . . 5 q , 

(3.6) -L. |logL=-\+^r jaJ^ I" j a^rc . 
3a a   a   \ k=0     J  \£=0     J 

The likelihood equations can be written [ with the second term on the right-hand 

side of (3-5) transposed] 

/ a -   V1   1   / 3 - \~1      I  a ~  V1     I a    \ -1 

j —X, ... 9 q 5 

(3.8, ^^(jf^öf^ ^ = 

The second partial derivatives of  (2/N) log L are 

2    / ä       \~1   / a       \-l  / q       \-l   / q       V-l 

-7tr\l^JA   ^(Jo ^ ^)   °~(joa^j   i^'-i] 
2     / a        \_1   / a        H  /a        \-1 / a   \-i 

-Ttr a    J C a0 J«      J!     J    a. J!      J!    Y    a0 J' ! 

a2     \£=o    £ ~*7      i£=0    £ ~£|    ^U^O    £ ~£|    ~JU=d    £ ~£J / 

-W? 2   "I   ^     ^ uj 
a        \£=o    /u    * 

.-1      /3 \-l        /   q \-l        / 
a„ J, ii^^r jii^ifjii^^r - 

i. J - x' 
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2 
(3.10)  -• i-loF L - 

3a. 3a 
2 N 7tr(jo^4lc~(ioa^^ 

,-1 

3 =  1, 

(3.11)  5-5- ^- log L 
3(a2)2 W 

T   2 

a   a   \ k=0 

\-l 

\ii 
,-i 

£=0 
a£^£ 

The information matrix has elements which are N times 

(3.12) 
3a. 3a. N 

1  J 
— log L = tr ! ? \ Jkl   Ji ( • r a£ ££1   Jj 

+ trf V a J \      J. J!  [ O, J' 
\k=o k ~kJ  -1 ~J\£=o l ~l\ 

(3.13) 

i, j = 1, ... , q , 

-1 

 2 W log L = "T tr Ji I E a? JP I » J = 1» 
3a. 3a cT   ~J U=0 y"' 'y' ' 

q 

(3.1*0 
yO    0_ 

^3(a: 
32   1 i   T    T 
2^ if log L = 7T 2 a r 

As N ->• °° , the maximum likelihood, estimates have a limiting normal distribution 

with covariance matrix whose inverse has elements given by (3.12), (3.13), and 

(3.1>0. 

The likelihood equations (3-7) and. (3.8) cannot in general be solved expli- 

citly.  However, the method of scoring can be used.  If L(y|8)  is the likelihood, 

function of a vector parameter 6 , the Taylor's expansion of the (vector) 

derivative is 

(3.15) "J-log L(y|6) = jj-log L(y|6) 
0=9* 

3 log L(y|6) 

39 36' (6-9*) + R(y|e,8*) 
e=e*~ ~ ~ ~ ~ 
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The matrix (3 /30 39') log L (y10) will be close to its expected value, 

which is a function of 0 , taken to be the "true" value of the parameter 

vector.  Under certain conditions if 0* is a consistent estimate of the 

"•true" value, the solution to 

(3.16) 
3^1og L(y|9) 

36  301 

0=0* 

(0-0*) = |s-log L(y|6) 

0=0* 

is a consistent, asymptotically efficient and asymptotically normal estimate 

of 9.  The procedure can be iterated; in suitable circumstances the sequence 

of vectors will converge to the maximum likelihood estimate, that is, a solu- 

tion to the left-hand side of (3.15) set equal to 0 . 

;(0) ~(0)  ~2 , cr  , ar    be a set of initial esti- In the present case let a, ,...., ,. 
1 q    0 

~(i) ~2 
.. , a  , a.  be the solution to the i-th set of 

q l 
mates, and let a (i) 

equations.  It will be convenient to let 

(3.1T) l_x = I   ^  j, 
k=0 * 

Then the i-th iteration involves the equations 

(3.18) I tr A J    A/    J.   + tr A.\   J    J!  A.'f" Mi)     -(i-D 

a 
5^-    tr A.1.,   J •i ~i— 1  ~£ 
i-1 

-2       -2 
h - ai-i 

^-i = - tr A.   .   J    +    „ 
~i-l -g      ~2 

l-l 

— tr A/    C A,   f J'  A."?"   , 
~1— -L   -   -1—1   -g   -1—1    ' 

g   =   1, 
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(3.19) -±-     \   tr AT1, J. (a!1) - a(i-X) V -f- a2- a2 

T 

2a 
+  t  tr A! r A., C 

2     „^4     ~i-l ~i-l - 
i-1 

20 
i-1 

These reduce to 

(3.20) 

j=l 

A—1     A—1 A—X        A _x 
tr A. n J A.\   J. + tr A. . J J! A! I" 

~i-X ~g -i-l -J      ~i-X ~g -j -l-X 
-(i) ,   1  +  "-1    "2 
«j  + 7T" tr A^ Jg a. 

ai-l 

^_1                      1              A_-| A  _-]          A    "I ^1            A_] 
= 2 tr A., J + —— tr A. , C A.' 7 J' A.' , - tr A. , J A. , Jn 

~i-l -g  ~2      ~i-l ~ -i~l ~g ~i-l ~i-l ~g ~i-l -0 
i-1 

- tr A.\   J J' A! f 
-l-l ~g -0 -l-l 

= 1. 

(3.2X) 

J=l 

,  A-X  T -(i) ,   T 
tr A.  J. a,  + —5- 

— 1—X  —J     J „A.<i 
2a 

i-X 

T  +  1  tr ^.-1 gl c - tr A-^ J0 
2ai-x 

If a = X and an is a free parameter (not specified), the likelihood 

satisfies (3.3) with a =1, the first partial derivatires. are (3.5) for 

j = 0, 1, ... , q , the elements of the information matrix are N times (3.12) 

for i, j = 0, 1, ... , q , and the equations for scoring are 

 A'.-.! I *\X}  -aU~^ 
.J      ~1-X -g -J 

(3.22) 
j=0 L 

tr A?1., J A71., J. + tr A.1, J J! A'.-l 
-l-l -g -l-l -j     -l-l -g -,} -i-l J    «] 

~—l AT A    I ^|   -j 
= - tr A.\   J + tr A. ., C A! t J1 A. \ 

-i-l ~g     -i-l - -i-l ~g -i-l 

u, J., ... ,q , 
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These reduce to 

(3.23)    I 
J=0 

tr A?1, J A.1, J. + tr AT1. J j! P.   } 
~i-l ~g ~i-l -j     ~i-l ~g -j -l-l 

a (i) 

= tr A.\   J + tr A.\   C A! : J' A! 1r   , 
-l-l -g     -l-l - -i-l ~g ~i-l 

0, 1, 

3.2 Moving Average Process Approximated by a Linear Transformation. 

The moving average process  {y } is (l.l) for $    =   ... = 3 = 0 , that is. 

(3.21+) Jt =    I    a    v   , 

t = ... , -1, 0, 1, ... .  Then the distribution of y , ,  YT is 

approximated "by the distribution of y defined by (3.1) "when J = L  , 

g = 0, 1, ... , q .  The components of (3.1) are 

(3.25) 
t-1 

yt = I    ai vt-i ' *"*      _L  j « » o   5  v^  j 

(3.26) yt = 
j=0 

a. v, . , t = q+l: 

The equations (3.26) correspond to a moving average process; the moving 

averages of the first  q observations, represented by (3.25), are truncated. 

The covariance matrix of the moving average process defined by (3.21+) is 

;3.2T: 2  2 T _,_ a a. I + 
J ~ 

q-i 
l~ od a.  a... (L1 + L x). 

j j+i j=0    H -    i=l j=0 

This is of the form considered in T. ¥. Anderson (1969), (1970), (l971t>), and 

(1973), namely 
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(3.28) )    a   G    » 

where    Gn = I    and. 

(3.29) (LS + L g)   , = l 

The covariance matrix of    y,,   ...   , y„    defined by  (3.25)  and  (3.26)  is 

for    q = 2   ,  for example, 

(3.30)0 
%a2 

a o^h 

2 j    2 aQ + a. 

a0ai +  aia2 

a0a2 

CX/-N CXQ 

aoai "h ala2 aQa2 

2 2 2 aQ + a,  + a_    an0L  + a, a? 

2        2        2 cua    + a a        a„ + a    + a? 

2 _,     2 J     2 . cu + a-.  + a2 

This matrix differs from  (3.27)   for    q. = 2    in the upper left-hand    2x2 

submatrix in   (3.30).     If    T    is large relative to    q    the  difference between 

the two models will not be important; the model  (3<l)  with    J.  - L      can be 

considered as  an approximation to the moving average process. 

When    J.  = L' J 

(3.31) 
\-i / q. 9\-i   1 

"l X£ Ji   = tr I    I     aS   L L 

1=0   *     /      J U=o   v ~        ~ 
tr M    a    J 

(3.32) tr \   I    aQ  J 
i-l 

,£=0 £ -9. Jn = tr I    )     a0   E ~u £=0    x, -. 
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The likelihood equations (3.7) and (3.8) for a,, ... ,  a  and a 

(with OL. = l) are 

(3.33)        tr(   I    az LZ\ " Lg |   $    a„  L£ |       c 
-1 /  q     .       „\-l 

I .fc=0 U=0 

»oh1 

a0 L 
\£=0 

a£ L 1 = 0  ,    g = l, 

a V-l/ a \-l 
»2    •   1   , ?     A     ,'H       f     *     ri     " (3.3U) a    =~trl    J    Oj^Ll  n     a£ Lx|       C 

The method of scoring leads to 

(3.35) l    tr A7\   LSL'J  A.'"}    S?)  -a!1"1) 
.^±     ~i-i ~  ~    ~i-i y j        J     i 

1 ^—1 ~'—1 o-     ^'_1 

ai-i 

/0  ^         T     ~2       ~2     5 T                1              ^'-1  ~-l     _ (3.36)    -^—   a   - a          = - -^— + -^j— tr A       A        C   . 
2a7 n   \  

x        x xl 2oT ,      2a4 .        ~i ^ ~i ^ - 
l-l l-l          l-l 

These can he written 

/ \ ? /s—1       er     ' i   •*'—1 ^ (i) ~—1       e ^'—1 
3.37 >    tr A.   .   Ls L J  A,   | a!   J  = - tr A.,   LS A.   , 

.^ -l-l -    -       -l-l    j -i-l  -     -i-l 

+ — tr $1-1  5 Ai-i i S ^i-1   > 
°i-l 

= 1, 

(3.38) a.  = i- tr A.   r A.,   C  . l        T -i-l   -i-l   - 

The set of linear equations (3.37) are solved for a,  , ... , a  . 
1 q 

2 
If the parameters are a ,  OL , ... , a  (a = l), then the likelihood 

equations are (3.33) for g = 0, 1, ... , q .  The equations for scoring are 
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(3.39) 
f.      Z-2. jt-1     -'-llU(i)       -(i-1) 
'trA,   n  +tr A,   ,  A.   .     CL       -(L 
i       ~i-l -i-l  ~i-ll 1   0 0 

J=l 
trA?\   L* A:-]{a{±) -ti^ 

A-l A_l A ' _2 

(3.1*0)       I    tr A.1 LB L °  A 'j   -«-1  |-(i)       -(i-l) v_l !-l 
i-1      j 

a:   '   - a: != tr A.   .   C A.   .   L B A.       , 
-1—1   -   -1-1   - -1--L 

=   1. 

These reduce to 

(3.1*1)     |tr A.2n   + tr 
—l — J. — l 

1       A > _T\ ^ (i ) ä A_1 ti    ^i 
,   A.   .lair' +     I    tr A.xn L    ' A.   . 

-1      -l-J. 0 .^T -1-1 - ~1~. 
.1=1 

,   a. 
•1    j 

(i) 

v_2     -(i-1) 
-l-l    0 = tr A.   ,   a:       '  + tr A,%   C A,   ..    , 

-1 -' -2 
^     C A.   _ 

-l-l  -  ~i~l 

(3A2) 
J=0 

tr A.\   Lfe L J  A.   r a.   ' = tr A.   n   C A.   r L ° A.   7 
-l-l  -     -       -l-l     j -l-l   -  -l-l  -       -l-l 

g = 1, 

These  form a set  of    q + 1    linear equations  in    q .+ 1    unknowns. 

If    N = 1    and    y    = y  s  then    C = yy'     and 

/ . -, A—1 All If,      A  » „"I 
(3A3)       tr A.   ,   C A.   r L s A.   r 

-i-l  -  -i-l  -       -l-l 

A  ' _1 '   IT      A !T A 1 

y«  A        L S A.       A.   1   y   ,     B = 0,1-, 

The equations   (3.37)  and  (3.38)  are then 

(3.MO 
j=l 

tr A71,   Lg    A.1,   L*5 

-i-l  -   I   -i-l  - 
• ~(i) . \h-iV  h-i± \h-i? 

^-l 

ot. 
a i-l 

A_1 D-      All 
tr A.^ LB A._^   ,  g = 1, 
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The calculation of A. , y can be done by solving 
~ 1 —_L   ~ 

/•o  i,£\ ^    "(i-l) Ti (3.46) )     oT L    z = y  . 
£=0    l ~    ~      ~ 

The matrix of coefficients has the  form  (2.38)   (with    ß.     replaced by 

~(i-l) 
a    , &=1, ... ,q).  The component equations are z = y  , 

36 _L    J_ 

(3.U7) zt+  J  ^-
1} zt_s=yt ,     t =2, ... , q , 

s=l 

(3.U8) zt + I    a^"l} zt_s = yt ,  t = q+1, ... , T . 
s=l 

These can be solved successively for z , ... , z  . Each component z 

involves at most q multiplications and the entire solution less than qT 

mult ipli c at i on s. 

Ä—1 
The first column of A.   can be obtained by solving (3.1+6) with y 

replaced by the first column of I.  Thus z.. = 1 and the successive cal- 

culations are 

t-1  ,.  . 

(3.1*9) zt= ~    I    % z
t_s »      t = 2, ... , q , 

s=l 

(3.50) z = -  V  a(l_1^ z.   ,    t = q+1, ... , T . 
t L

n S t-S  ' M.    3 5 
s=l 

The (j+l)-th column of A.   is simply LJ times the first column; that is, 

it is the first column displaced by j  units for 
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(3.51) 
0 
Z- 

JT-j 

J _L380»      j-1- ~"_L 

(3.52) LJ   z = 0   , j   = T,  T+l,   . 

Thus the  calculation of    A-\   &ö    involves less than    Tq    multiplications. 

Another way of looking at the  calculation of     (£p_n ot.  L  )        , where 

~(i-l) we drop the  carat  and superscript  on    a„ for  convenience  is to  see that 

(3.53) 
T-l 

V   Ä V «• T  j l_   a8_ L*    £_   6.  L: 

£=0 j=0 

q     T-l 
I      I    a9  6. L£+J 

£=0 j=0    *    J  ~ 

T-l 
=    I I      a„   6.  L1 

i=0 £+j=i    Ä    J   ~ 

because    L"  = 0     for    i  = T,  T+1D   . if    «o = l. 

(3.5*0 

(3.55) 

% 60 = 1 

I    ao   «i   «  = 0   , J. _L   «j la« ^        U "•_L j 

(3.56) 
£=0 

°'l  &l-l = °   » i  = q,   q+1, 

The coefficients     S_,   6n , 
0  1 

equation (3.56) with q_ 

satisfy the homogeneous linear difference 

boundary conditions (3.5*0 and (3.55).  Therefore 

(3.57) 6i = £ k£ Z£ ' 
i = 0, 1, 
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where z , ... , z  are the roots of the associated polynomial equation 

(3.58) I    a0  z
q""£ = 0 , 

£=0 * 

and    k  3   ...   ,   k       are  determined  so   (3.57)   satisfies  the boundary con- 

ditions   (3.5*0  and  (3-55).     [The  form  (3-58)   is  on the basis  that the    q 

roots  are different.]    Then the inverse  is 

/ q. n\-l °° .       T-l 
(3.59) I    aÄ L£        =    I    &± L1 =    I    5    L1   . 

k=0    Ä ~   I i=0 i=0 

It may be observed that (3-5*0» (3.55), and (3-56) are identical to (39) 

and (1+0) of Section 5.2 of T. ¥. Anderson (1971a) with  ß.  replaced by a. 
J J 

and p replaced by q. .  Thus the coefficients  6_, 6,, ...  correspond to 

the moving average representation of an autoregressive process with coefficients 

'  1'     '  q. 

Then 

(3.60) ( ? a A
1 j*  = Y 5. L^ = 

T"fk 6. Li
+* 

\£=0 £ ~ j  ~   i=0 x ~      i=0  x  ~ 
i"ä"k 

because L   = 0 if i+k > T . 

*(±) 
The coefficient of o£   in the j-th equation of (3.^) has the form 

(3.61) tr ( I    an A'1  LJ L'
k |. ? a„ l/*^ 

\£=C 1=0 £ ~    ~ ~  \£=0 £ 

T-l-j T-l-k        _  ,_ 

g=0  i=0  g 

h '£ 
A matrix L L   has all elements 0 except along the diagonal h - £ 

entries below the main diagonal, which consists of l's and 0's .  In 

h  ' £ 
particular, L L   has only 0's on the main diagonal if h $  £ , and 

h 'h 
L L   has l's on the main diagonal except for that first h entries 

being 0.  Hence 
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(3.62) tr Lh L   l=  0 , h *   I , 

(3.63) tr Lh L'h = T-h ,   h = 0, 1  T-l  , 

(3.6U) tr Lh Lh  = 0. h = T, T+l, . .. . 

Thus (3.6l) is 

(3.65) tr/j a. LA"1 ' L^ L'M f a i/^"
1 

T-l - max(j,k) 
Y       [T-i- max(j,k)] 6. . i. . ifi. 

i=0 

Note that 

(3.6b) 2 

°     Jo 6i+lk"J| Öi = aAE(k"j) 

where anr)(k-j)  is the (k-j )-th covariance of the autoregressiTe process 

2 
corresponding to the coefficients 1, a , ... , a       and variance Q  .  Thus 

o 
(3.65) is approximately Tg, (k-j)/a  , especially if the roots of (3.58) 

are small and thus the series (3.66) converges rapidly.  In particular 

THK»    U=0  Ä ~/ -  ~   \£=0  Ä ~  /       0
d 

2 
There are various ways of calculating Q. (h)  given a-,» ... , a  and a 

[See Section 5.2 of T. ¥. Anderson (1971a), for example.] 

The equations (3.^0 are approximately 

(3.68) \   a^-l}(k-j) ^i} = d , .    j = 1, ... , q , 
k=l ""        "     J 

where 
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• 3.69)      a. = i. !   S<"> L*^ 
^£=0 

^2 

"l 
\l=0 

;|i_l)  ^ 

,-1 
;(i-l)   Ts\-1 

U=0 

o 
i-l 

T tr       £    S 
i-l (i-D  T£\ -1 Tff |   £    -(i_i)     i£\"J 

£=0 
L& !   I    «i 

J  = 1.   • 

(i-D, The    q x q.    matrix whose elements  are    aV (k-j)     are the  covariances of an AR 
>(i-l) autoregressive process of order q , whose coefficients are 1, a,    >•••»_ (i-D 

Then the solution to (3.68) is 

(3.70) Mi) 
°<k 

j=l 
f, , a. , 
kj j 

where  (ffc.) = [o^k-j)] 
-1 The elements  f, „  are the coefficients of the 

kj 

quadratic form of v, , ... , v  having a normal distribution with covariance 

r(i-D matrix [°YR~ (k-j)]. The matrix ip AR 

a. 

13.71)    of i-l 

a, 

1 

(i-l) 
1 

(i-D 

-(i-D 
<*1 

1 + a. :i-ir 

J1-1* + s^1-1^1-1) 

1 ?-1} 

The matrix is persymmetric;   that is,   it  is   symmetric  about the transverse 

diagonal.     If    q is odd the middle term is 

(3.72) 
i-l 

1 + a[^    + + a (i-ir 
4(q-D/2 

The matrix is essentially derived in Section 6.2 of T.   W.  Anderson   (1971) 

It  can  further be  shown that 

,M-1 cos  Xj  cos  Xk (3.T3)    li, i t,(jo a, L*)-1 J i/> ( jo tt£ L'
£p .   fWiJ^ dX 
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h_. Estimation of Coefficients of Linear Transformations When a Covariance 

Matrix Has Linear Structure; Autoregressive Processes with Moving Average 

Residuals. 

Let 

P 
(h.l) l     ßp Kg Y =  VI 

1=0    /j     " 

where ß, u = 0 and 

(h.2) £(u) = £uu' =    I     a G , 
g-0 

G  G , ... , G  are q + 1 known linearly independent symmetric T * T 
~0'   ~1' ~q. 
matrices and ' aQ,  0±,   ...   ,  aq    are    q + 1    parameters  such that    lgsQ  Cg Gg 

is positive definite.    Then ..y    has mean vector   $1 = 0    and covariance matrix 

/ P \-i   a I E A-i 
(if.3) £(y) = ^gU-ü U=o   ^ g=o   s   fe \k=o 

with inverse 

<"> ^^l^Üo^)     i°h*% 

k,£=0 ^ ß£ i (j0 
ag Sg)    5; 

We  assume     3=1. 

If    u    is normally distributed,  then    2/N times the logarithm of the 

likelihood is 

(U.5)    | log L = - T log 27T +  2 log   |   f     ß£ KÄI - log   |   \    O    G   | 
N                                                                   £=0     *  ~*- g=0     6 

3,   K,'       I    O    G.   I       ß0 
k ~k\g=0    S ~S| £ -  l\l=0^  ?kl    >-  °«^l       ^?£C   " 

The partial derivatives are 
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(k.6)  -i. | log L . - t-yo % 0j|    G^ 

f =  0,   1,   ...    .   q   5 

In case    ^ = Lk  ,  k = 0,   1,   . .-.   ,  p   , N = i   ,  and    yOO  = L
k y  ,  the 

derivative equations  are 

(^•8)    tr   ?   a    G I"1 G   =     V     S    3   y
(k)'/ V    Ä    rKlv    -    r \_1    (A) u=o «-«/ .f k]=o3kß^   |gi0-s?g) ?f|gi0°g?gj r' 

f =  0,   1,   ...    ,   q   ,. 

Ä   =  1,   . . .    ,   p   . 

The  second partial derivatives of     (2/N)  log L    are 

q \-i   p 

^ I    I   °g   ~g X     ßÄ K£ C   > ,g=0 6/       £=0 ~A  ~ 

f,   h=  0,   1,   ...    ,   q   , 

<>->    ^ f—-I ^(^Ni"^^ 
I   *"  u j - J. j    •••    5   Q.   ? &        -^- 9       •   •   •       9     P      5 
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Ä *log L " " 2 tr( jo> Si)"' & Li * 5^ 5r 
I I       M \-l 

-2t"?Kr yoagGg|     K, 

X* 3      X/ -i- 5 

The information matrix has elements that are N times 

»•»» "A* 57^ *** L " I tr (j0 °g Sg)_1 2f (j0 °g °gf i • 
f, h - 0,  1,   . . .   ,  q  , 

("-lM ^sfrf *l0g l " " tr -G* (jo °s 5.)"1 !,(X "he if   • 
f = 0,   1,   ...   ,   q £  = 1,   . 

>.15)     - 
3
2 ! / P \-l      / P \-l 

+ tr|   f    ß    KJ f    a    G      f    3    K'\      K',[   I    a    G K£   , 

£,  £'  = 1 P   . 

Let 

(U.16) B =    I     3f  lj   K£   . 
~1_X      £=0    * 

The method, of scoring leads to the  following iterative procedure: 

(h, IT)        jo tr <g^ 0, t^r1 5h |^> - 0<«>] 

f  =  0,   1,    ...    ,   q   , 



33 

(J+.18) 

h=0 

,/xU    s-1        ft-1    [^(i)       /v(i-l) 

P 

£=1 
tr SiIi 5j !i-i 5* + tr !i-i zi-i !i-i 51 (?i-i>  5; gf'-gf-^ 

2 tr B.A   K,  - 2 tr C B!        (z       )       K,   , 
^X•X     -«J ^     -«X     X rvJ-"mmA- «^J 

j = 1» 

These equations are equivalent to 

iu     v-1 _     ,£u     x-1 „     ~(i) u    ,-1 _    g-1    s(i) C.19)        _ I    tr  (^)- Gf (Z^)- Gh 3-' - 2    T    tr Gf (E^>- K, B& £ 
h=0 £=1 

-2 tr G.  (£ . )_1 + tr B'  .       (£? 1 T
1 G     (Z?    )~X B C 

-«X      - —X—• X ~X—JL -^X — X ~X ~X—*X ~X-**X    — 

+ 2 tr Gf   (^_i)_1  5o 2i-l   ' f =  0,   1,   ...   , 

(H.a.) -2 ^t^i^)-1^^1' 

+  2 tr B.\   K.   B.^   K..+ tr B.\   E.   .   B.   f  Kö   (£•-,)       K ~i-l  -1   ~i-l   ~£ -i-l  ~i-l  -l-l  ~£     -l-l -.1 
g(i) 

u    ._i 
= h tr B.   .   K   - 2 tr C  B.«   _   (E.   . )~x  K.  - 2 tr B.   n   *.  B7\ 

-l-l   ~] -   -i-l     -l-l ~1 -l-l   --]   -l-l 
K 

-2 tr ?i-i £i ?ii 5o (ii)   5 ' 
:-i 

v-l      i 3    -1-        T.«     — If     K.  = L"3   , then    tr B."     K.   = tr B.%   LJ  = 0 
-j ~i-l  ~j -i-l 

(U.21)     - 2    J    trG,   (E^)"1 Lj  B71,   a^1} 

hi0 ~h    -i-l -    -i-l    h 

j     --     1 ,       ...       ,     J 

Then   (U.20)  is 

+2     >     tr B.   n     E.   . 
fc=l. -1"1     ~1-1 liii ^ (I"-!)-1 *> #> 

^ /V 

2 tr C 51-i (5--X»-1 5j - = - B-  ^ §£ (|^,- JJ , 

j   =   1, 
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The matrix of coefficients of ol   ', oO  , ... , cT  ,  ßn  , ... ,3  '  is 01 q 1 P 

tr (g-i'"1 It 'S-i'"1 5 h ~f vSi-l'      ~   5i_i 

2 tr £-J- yu    s'-i T'* ,fu   r1 TJ tr 5i-i5i_i. ?i-i ~    (5i-i}    i/ 

If    C  = yy'   ,  the  right-hand side of  (4.2l)  is 

(^.23) - 2 (S^yM^r1 L
J 

and the quadratic form on the right-hand side of (U.19) is 

y 

i   ^ U       s-1    _        ,ÄU       s-1    £ 

<»•*»> <»wi> (^riiS^Li 
-U 

Wien    £      is to represent the  covariance matrix of a moving average process. 

5o = I > 
t, 

(^.25) G    = Lö + L *   , g = 1,   ...   ,  q   , 
~g       ~ ~ 

and 

q-g 2 
(H.26) a=a     J    a. a.,     , g = 1,   ...   , q . 

g J^-L    j    J+g 

Since    L    L is    L& ,  h <_ g  ,  except  for at most    h    l's    heing. replaced 

~u A ' — 1     ' £ by    0's  ,     X. and    B- _-,   L almost  commute and the lower right-hand corner 

of (it-.22)  is  approximately 

0-1.27 2  tr B.   r L      LJ  B.-1    • 
~i-l  ~       ~     ~i-l 
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5.  Estimation of Coefficients of, Linear Transformation; Autoregressive 

Processes with Moving Average Residuals 

Here we combine Sections 2 and 3.  Let 

(5.D I ß K y = I    o^J T, 

where K_, K , ... , K  are p + 1 known linearly independent T x T 

matrices, J , J ,...,. J  are q. + 1 known linearly independent matrices, 

ßn = a -  1 , ß  ... 5 ß , a 5 ... } a  are p + q parameters, and v 
U     U _L p     X q ~ 

is a T-component random vector with mean vector jg v = 0 and covariance 

matrix y(v)  = O    I .  Then 

(5-2> * "(j„ ß* 41 Jo ^ J- ~ 
has mean vector 0 and covariance matrix 

(5-3)   Ay) = <^ I %K£|   \    a J  ^ a J./ I ß£ KjA "' = o2 B"1 A A' B'"1 5 
Ifco   ~ÄI k=0 k k k=0 k ^\fco .  *j ~ 

wh-e A = 2=0 <\ Jk and B = g=Q ß£ K£ . 

If y^, ... , yN are N observations on y with a normal distribution, 

2/N times the logarithm of the likelihood function L is 

(5.h) | log L = - T log 2TT - T log o2 + 2 log | I  ß K J - 2 log | \    a, j I 
fco    * ~* k=0   k ~k 

±r i „  L   ^   ^ ^ {X   °k J^|    LI   \ 4|       U C a"   £',fc0    ~      * ~~   \k=0    *   "*/    |k=0 

The partial  derivatives  are 
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(5-5)   US" I 1O^ L = " 2 tr| j0^)~lj~€ 

i-i / q.        \-i    / q.        \-i 

= - 2 tr A-1J    + %-tr A^BCB'A'^J'A 
_1   ,     g = 1,   ...   ,   q   , 

(5'6)  4" « l0g L = 2 tr( jo 3i -4 ^ 

= 2 tr B_1 Kh - ^"tr B"  A'
-1

 A-1 K^ C   ,       h = 1,   ...   ,  p  , 
~      ~        a 

(5.7)    —g    rlog L =  -— + -jj-tr       I       ß       ß£ Kr     I     «k^l I     ^k K£  C 

3cf CT^      a4      £',£=0   Z      ^ ~£ \k=0   * ~K|    |k=0   * ~k|      •"* ~ 

T 1 •    -1 '_l 
= --^-+^17-1^ ABC  B'   A . 

&-       a4 ~        ~ 

The maximum likelihood estimates are defined by setting the derivatives equal 

to 0. 

The second partial derivatives of  (2/H) log L are 

2 
(5-8)     -=—\—   |    log L =  2 tr A"1 J    A-1 J_ - -| tr A-1 J_ A-1  B C B'  A*"1 J«  A*"1 

ta    da„   I ~g ~      ~f        2 ~f ~      ~ ~ ~ ~g ~ 
g     f a 

2 -l '-i '-l '-l 
-— trABCB'A J'  A J'  A 

02 f ~ ~s  - 

2              -1 *-l '-1 '-1 
-^trA'BCB'  A    XJ'A J'  A , 

G
2 ~        ~ ~g  ~ ~f   ~ 

g,   f = 1,   ...   ,  q   , 



3T 

g      h a 

9 -i -1 r~l 

2 
+ — tr A x J    A-'KCB'A ~g  ~       ~h 

a 

g = 1,   ...   ,   q   ,  h = 1,   ...   ,  p   , 

(5-10)   3FV Ilog L = " 2 tr T1 5j !_1 5h - %tr y V""1 f * 5h E • 
h     j a 

n,   j  — ±,   ...   sP   j 

2 
(5.11)     5—-   | log L = - 4tr A-1 B C B'   A'

_1
 J'   A*"1   ,  g = 1,   ...   ,  q   , 

3a    3a2    N a ~       ~        ~g ~ 
g 

2 
(5.12) ^—3-   § log L = %tr A"1 K    C B'  A'"

1
   , h = 1,   ...   ,  p   , 

3ß    3a a 
h 

p 
3 ? T ? -1 '—1 

(5.13)      —   flog L = -j-    - Vtr A X B, C B'  A . 
3(a2)2   w a4       ab         

The  elements  of the information matrix are    W    times 

(5-l4)   - I 3^7 \log L = tr f' i A"1 ^ + tr f1 £g Jf ^'"1 > 
g    1 

g,    I    —   X j     ...     jCj.) 

2 
(5'15)     - t-^W   F log L = - ^ J-  A'"1 A"1 ^ B-1 A - tr J    A"1 ^ B"1   , 

g      h 6 t> 

g = 1,   . ..   ,  q  , h = 1,   ...   , p  , 

2 

(5.l6)     - £^——-   - log L = tr B"1 K.   B-1 K,    + tr K!  A'"
1
 A"1 K    B_1 A A'   B'"

1 

'"  dp,     dp.fl° ~        ~j    ~        ,3l ~J   ~ ~h   ~        ~   ~      ~ 

h,   j   = 1,   ...   ,  p   , 
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(5.IT)     -   I ^~-T7   ir!°g L = ^tr J'  A'   X   , g = 1,   ...   ,   q.   , 
3a    3a2    W a2        ^ 

(5.18)     - y    - log L =  - -=- tr K.    B~     , h = 1,   ...   ,  p   , 
* 3a   3a2    N a2        ~h ~ h 

(5-i9) -^A»ioBi=^- 
The method of scoring can be deyeloped from these results 

If J = K = L& , then the elements of the information matrix are N times 
~g  ~g  ~ 

g  f 

(5*20) ~ £ 3a9 3a  N log L = tr ^ L*  ^ V"1 '   « ' f = 1 

(5-21) "^¥ir'NlflgLB-trf1ir*L.8i 

2 
(5.22)  - | 3ß

8     | log L = tr A"1 Lh B_1 A A' B'~L L'J A'"" 

X 3  ...  ,  q_,  n     ±,  ... 5p  , 

-r log : = ;:r A ' L" B - A A' B _1 L*J A'"1 , 

h, j = 1, . . . , p , 

2    J 10g ^=u, g = 1, ... , q 
2 

;5.23)  _ £_J o-IlogL=05 g = 1, 
3a„ 3a 

5  M.  > 

:5.2U) - f p- if log L = 0 , h = 1, ... , p 
3ßh 3a 

Note that LS , g = 0, 1, ... , A, B, A-1,  and B -1    are polynomials 

in L and hence commute... Thus (5.21) and (5.22) are 
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g  h 

g=   1, ... , q , h = 1, ... , p 5 

(5'26)  " ^3FV" ^l0g L = tr ?'_1 ~'J ~h 5"1 '  h, j = 1, ... , p • 
h  j 

When J = K = LS , then the method of scoring involves the solution of 
•*g  ~g 

(5.27)  f tr A-l l*  L'f A!"1 S«1» 
=1 

? ,  T'g -'-1 Th ~-l g(i) )  tr L D A. n L B p 
, ^    -  -i-l - ~i-l  h 
h=l 

= -XT—   tr A.\   B. n C B'  A. 7 L fe A. 7 + tr A. , LB B. , - A. ,  , 2      -l^-l -i-l - ~i-l ~i-l -   ~i-l      ~i-l -   -l-l   -l-l ' 
Gi-1 

(5.28) - I  -tr LJ BT\   L'f A.'"1 a{i) 

f=1        ~    -l-l -  -i-l  f 

+ I    tr B. , L J L BT1   8Uj 

h=l   -1"1 ~  ~  -1-1 "h 

g = 1: 

i-l 

j = 1, ... , p , 

(5.29) a.=    jTtrA^B^CB^Aj 

If N - 1 , y±  = y  , and C = yy   ,  the right-hand sides of (5.27), (5.28) 

and (5.29) are, respectively, 



Uo 

(5.30)    ^-    (A£    B.       y)*  A."1 L «  (^    B.       y)  + tr AT1.   L^  (B[~] 

g  =  1,    . 

'i-1 

(5-31) - ^ <& i., j)' L af_, t>+ f Ci - ö s3 & • a.  , l-l 

j = l, 

(5.32) 1   /*-! -1 f <£_i !i_i x)   (Ai_! ?i_! y) 
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6. Asymptotic Theory 

The exact distributions of the maximum likelihood estimates developed 

in this paper cannot be obtained in closed form in general.  However, asymptotic 

distributions can be found.  If N -> °° we have the case of repeated observations 

on the random vector y ; in the case of time series, however, N may be 1 and 

T -*•  co .  In either case when consistent estimates of the parameters are used as 

initial estimates, the estimates obtained in the first step of the iteration pro- 

cedure are consistent, asymptotically normal, and asymptotically efficient (when 

normalized by /N    or /F , as the case may be). 

In the model of Section 2.1 no iteration is involved and the asymptotic 

properties are the usual ones as the number of observations N increases.  The 

model of Section 2.2 is the autoregressive model with the first p observations 

treated as fixed  (y    = ... = y = 0) ; the asymptotic theory as T -> °° ±s 

well known.  [See T. W. Anderson (l9Tl)5 Section 5.5, for example,] 

For each of the models in the other sections [as well as the model 

E = I „ a G-  treated in T. W. Anderson (1971b), (1973)] an iterative procedure 
~     &     o ~o 

was proposed.  If the initial estimates are consistent, the matrix of coefficients 

of the linear equations is a consistent estimate of the information matrix.of one 

observation.  The asymptotic distribution of the right-hand sides is normal with 

covariance matrix equal to this matrix.  It then follows that the estimates have the 

stated properties.  We shall carry out the details of the proof only for the 

model of Section 3.2, which shows the pattern. 

i 

Let    y =   (yx,   ...   ,  yT)       be  defined by 

(6.1) y =     I    a.    Lk  v = A v 
~       k=Q    k  ~     ~       ~   > 



1*2 

We shall let T •> °° .  We assume that the roots of (3.58) are less than 1 

in absolute value.  Then (3-UU) and (3.1*5) for i = 1 are 

(6.2)   f tr A- L« L'J A;- f> = £ y' A;- A"1 LJ^ y - tr ^ * V^ 

g = 1, ... , q , 

(6-3) ai   T ?' ^o   v i • 

We  shall show that 

(6.1*) plim    i-tr A"1 Lg l/J  A'"
1
 = lim i-tr A-1 LS L'

J
  A'"

1
   . 

The right-hand side  is  given by   (3.67).     The left-hand side  is 

T-l - max(g,j) 
(6.5) I 

i=0 

i  + max(g,,j) 
T 

X) -0 
V|J-B|   6i   ' 

where  5=1, Sr, i = 1, ... , constitute the solutions to (3.55) and (3.56) 

with a„  replaced by ou , I  = 1 q .  With arbitrarily high probability 

a , ... , a  are such that the roots of the polynomial equation with these 

coefficients are less than 1 in absolute value, in fact, are less than . p < 1 

for some p  [greater than the largest root of (3-58)].  Then (6.5) converges 

in probability to 

~ a  (g-j) 
(6.6) I    fi  .  .,fi. = AR 

.L      1+ g-.i  1 
1=0 -ig-Jl i    a2 

We can write (6.2) as 



U3 

j=l 

1 
T 

:-i (6.7) I   ±tr AÖ±  Ls L J A "x v¥ (a x; - a.) J r-i :(D 

1 1      ~'-l ~-l   B    *-l 

Jo 

tr A  L8 A' AQ 

1, 

We want to show that the right-hand sides have a limiting normal distribution 

with means  0 and covariance matrix (6.U).' 

Consider 

(6.8) A_       y.A'-l    A-l     LS    A-l    y     = 1 v.      A-l     Lg     v 

~        ~      ~        ~        /F(T   ~      ~        -      ~ /Tcr2 

=o   1 föac 
v'  L1+S v 

T-g-1 x       T-(i+g) 

i=0      X  y*TcT      t=l        t    t+1+f 

For any n the set (l//T)E4._ v, v, ,,..., (l/vTjE, v. v.   have a limiting 

normal distribution [Theorem 7.7-6 of T. W. Anderson (1971a), for example] 

with means  0 and covariances 

T , T 
1 & 

t+j {6.9) ~ £>     l      v. v+J.. v v _ = i- i   y T r , ^ _,  t t+.i  s  s+h  T r A t,s=l t=l 
Vt Vt+j Tt+h 

j = h = 1, ... , 

= 0 , j^h. 

Then the set 

(6.10! v, g = 1. I   6. -±_^ y   . 
i=0 x v^a2 t=i * Vt+i+s ' 

has a limiting normal distribution with means  0 and covariances 



kk 

n-q. 
(6.11) -i . I      6. 5 \£    I 

a     i5j=0 t,s=l 
Tt Tt+i+g vs Vs+j+h 

n-q-lg-h 

i=0 
6i 6i+|g-h| 

which has the limit  as    n -> °°    of   (6.6).     That the limiting distribution of 

(6.8)  is the limit as    n -*• °°    of the limiting distribution of   (6.10)  is jus- 

tified by Corollary 7.7.1 of T. W.  Anderson   (1971a),   for example.     Note that 

.  I T-g-1 ... T-(i+g) \ 2 T-g-1 °° 

Mi=nVl      X  ^O2    til        *    t+1+g        "i=nVl    X-i=n-q+l    X 

Now consider the  difference of   (6.8)  and  (6.7)»  which is 

(6.13) 
/F 

-i- v1   A -1 Lg v - -k v' A> Ao    V L   Ao   A v + tr Ao   L   A' Ao 
aQ 

We write 

(6.1k) 

Then   (6.13)  is 
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(6.15)   — , 
iff 

~~ v' A-1 LS v 
a   

_1_ 
12 y'A{(A      -A ~X • (AQ-A) AQ)(A    -AQ"<AQ-A )A~X)Lg(A    -A~  (AQ-A )A X )AV 

+ tr   (A 1-AQ
1(AQ-A)A_1)LSA'(A'   X-A'_1(AQ-A)'A^"1)} 

_ _  _i-i  lri A   -HS •1.-1T 

x\\S   SJ. 
v'A    Löv + —- v'(A_-A)'An    A    L6v 

+ ~v'A0
x(A -A)A X

L
8

Y + ^v'A •LLSA X(A -A)V - tr A XLg(A -A)'A _± 

°o ao ~  

- 4"v' (vA)'Ao Ao (vA)A L v - 4-V'(VA)'AQ A L A0 (Ao~A)v 

% ao ~ 

" 4"V,AÖ1(VA)A~1LSAÖ1(AO~A)V 

%  

+ df I' (Aü~A )' Ao "^ö"1 (Ao~A )A~1^gAö1 (Ao~A ]Z 

+ tr Ap1(A0-A)A~1Lg(A0-A>'AQ" 

The  first term on the right-hand side  of  (6.15) has probability limit 0 because 

(6.8) has  a limiting normal distribution and    p ÜBL.      a„ = 0    > 0.     Each of the 

third and fourth terms  are 

(6.16)      —   —v'A    LB(A -A)A    v = ^-   2,     (%    -OL )     }.    ä. 6    —vL 

a^   ^ ~ ~° ~   ~° ~ ~   ~     o2
Q k=i     *     ^ i,j=o x J ^ ~ ~ 

V 

Let 

(6.17) ¥_ =    I     5. iT>  Lh+J  v 
hT      j=0    J   /F ~     ~ ~ 

Then 

(6.18) 

We  can write 
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(6.19) I      6° S^v- Lg+h+i+^ v=    I    6°W .0 
/ VJ  . W     , V -1--I V • / O. '1 ,    1 ,      " IT'- 

i.j-o   x   J /F ~   - '     i=o   1   s+k+1'T 

With arbitrarily high probability  | S.  j < pQ for some  pQ such that 

0 < p < p < 1 .  Then the square of (6.19) is less than 

,;oi 2 

(6.20) ]      4 i    P?V\VJ_.  r i=o W        i=o   x   s+k+1'- 

Since the expected value of the second sum is  less  than    O I ._„   S./(l-p-, ), 

(6.20) is bounded in probability.     Since    p üBL ^ a,        = a    ,   (6.l6) has 

probability limit 0   .     The  second term and fifth term give 

(6.21) ^   -v'    (An-A)'  A*"1 A"1 Lg v -  — tr   (L-A) <  A*-1 A-1 Lg 

2,i,    (ak    -\} 
a0k=l 

V       ^0   „      if,   T'k+i,g+j       2   .     T'k+iTg+j j I       o.   o.      v'   L L • gv-a    tr L L&  ° / 
i,j=0    1JV^'V~'V~~ ~ ~       ' 

+ -i      I       6°   6.   (a2 - £) tr L*k+i  L^ 

Tlie  sum of    6.    times  the  first parenthesis  is  treated like   (6.17); note that 

the parenthesis has mean    0     and  (6.18)   as  a bound on the expected value of 

its  square.    The  same  argument  carries  through.     If    i/T~(ö -<0     is bounded in 

"(O) probability     [or     /F{n      - a, )  is],  then the  second term converges  to    0    in 

probability.    The other terms  in   (6.15)  are treated similarly. 

It  follows  from these results that  the  solutions to   (6.7)»  namely 

•^ f 1) — "• (~\ ) 
i/T(a,     -CL, ),   ...   ,   VT(a      -a  )     have  a limiting normal distribution with 1        1 q q ö 

means     0    and a covariance matrix that  is the  inverse of the  information matrix. 

The sample  covariances    c       defined for   (2.1*8)  are consistent estimates  of 

o'(h),  h = 0,  1,   ...   ,  p+q   .     From these  can be  obtained consistent  estimates  of 

3-, 3     ,     cr  (0),   ...   ,  a  (q)     and of    ß       ...   ,   ß     ,  a   ,   ...   ,  a     ,     and 
2 

a      as  described in Section  5-8.1. 
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